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GEOMETRY OF MANIFOLDS WITH
STRUCTURAL GROUP #%(n) x 0(s)

D. E. BLAIR

K. Yano [12], [13] has introduced the notion of an f-structure on a C* mani-
fold M**¢, i.e., a tensor field f of type (1, 1) and rank 2# satisfying f* 4 f =0,
the existence of which is equivalent to a reduction of the structural group of
the tangent bundle to %(#) < @(s). Almost complex (s = 0) and almost contact
(s = 1) structures are well-known examples of f-structures. An f-structure with
s = 2 has arisen in the study of hypersurfaces in almost contact spaces [3];
this structure has been studied further by S. 1. Goldberg and K. Yano [4].

The purpose of the present paper is to introduce for manifolds with an f-
structure the analogue of the Kaehler structure in the almost complex case and
of the quasi-Sasakian structure [2] in the almost contact case, and to begin the
study of the geometry of manifolds with such a structure. In § 1 we introduce
the Kaehler anologue and its geometry and in § 2 we study f-sectional curva-
ture. §3 discusses principal toroidal bundles and §4 generalizes the Hopf-
fibration to give a canonical example of a manifold with an f-structure playing
the role of complex projective space in Kaehler geometry and the odd-dimen-
sional sphere in Sasakian geometry.

1. Let M?**$ be a manifold with an f-structure of rank 2x. If there exists

on M**** vector fields &, x = 1, - - -, s such that if 5, are dual 1-forms, then
771(511) — 5.ty ’
() 6. =0, n9,0f=0,

f2 =1 + Z$I®7]z 5

we say that the f-structure has complemented frames. 1f M**** has an f-structure
with complemented frames, then there exists on M***¢ a Riemannian metric g
such that

8X,Y) = g(X, 1Y) + 32 9 (X)n(Y) ,

where X, Y are vector fields on M***¢ [13], and we say M*"*$ has a metric §-
structure. Define the fundamental 2-form F by

F(X,Y) = gX,fY) .



156 _ D. E. BLAIR

Further we say an f-structure is normal if it has complemented frames and

.1+ 2&®dyp, =0,

where [f, f] is the Nijenhuis torsion of f [9]. Finally a metric f-structure which
is normal and has closed fundamental 2-form will be called a o -structure and
M®+s a A -manifold,

It should be noted that since 7 A --- Ap, A F" % 0, a A -manifold is

orientable.

Two cases will be of special interest.

1) Let M**s be a Riemannian manifold with global linearly independent
1-forms #,, - - -, 5, such that dy, = --. = dy, and

”1/\"/\73/\(617:0)”:/&0'

Let () = {XeMZ* s, meM™**|5,(X) =0,x =1, -..,5}; then .¥ deter-
mines a distribution which together with its complement reduces the structural
group to 0(2n) X @(s). Now if &, --.,&; are vector fields dual to 5, - - -, 7,
and X, - - -, X,, linearly independent vector fields in ., then

(771 /\ e /\ ”s /\ (d”z)n)(gl) Tty Es; XU ne 'Jin)
= (dﬂz)n(Xla Sty XZn) :/é 0
giving £ a symplectic structure. Thus the structural group can be reduced to
%(n) X O(s) and M**s has a metric f-structure with complemented frames 7,

- -, 5, and fundamental 2-form F = dy,. If this structure is a 2 -structure,
we will call it an & -structure.

2) Let M**s be a manifold with a 2 -structure with %, - - -, », denoting
the complemented frames. If dp, = 0,x = 1, -- ., 5, we call it a ¥-structure.
Theorem 1.1. On a X -manifold the vector fields &, - - -, &, are Killing.

Proof. Denoting Lie differentiation by .¥-we

= £.8(X, fY) — g([&., X1, fY) — (X, [&,, fYD)
= (Z.,. 0, fY),

where we have used the fact that &, f = 0 (see [9]). But &, F = di, F +
i, dF = 0 since (i, F)X = F(§¢,, X) = 0. On the other hand,

(Z: ., ,(Y)E,) = &.(7,(Y)n, (X)) — 7,(Y)n,([£,, XD
' — 7,(YV)g(X, [£2, §,D) — &, (Y)),(X)
= 2,(V)&,7,(X) — 5,(¥V)n, (&, XD
—7,(VegX, [¢,,6,D =0,
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since &, n, = 0 and &, &, = O (see [9]). Therefore

(Z: X, fY + 2 9(Y)§,) =0,

but f + ] &, ® 7, is non-singular, hence &, g = 0.

Lemma 1.2. On a % -manifold dp (X, Y)= —2( y5,)(X) where IV denotes
covariant differentiation with respect to the Riemannian connexion. In the case
of an F-structure

VY'SI bl _%‘fY H
and in the case of a €-structure
VY‘SI = 0 .

Proof. dp(X,Y) = Wxp)Y) — Py )X) = —2(Fyn N X) since 7, is
Killing. In the case of an %-structure we have F = dy, and hence g(X, fY) =
—2g(X,Vy¢,), whereas in the case of a %-structure 0 = dy,(X,Y) =
—28(X, V0.

We now discuss the meaning of I, F for J -structures.

Proposition 1.3. On a % -manifold

V)Y, Z) = § 3 (9. (Y)dp,(fZ, X) + 9,(2)dn.(X, fY)) .

The proof is a very lengthy computation but similar to that given by Sasaki
and Hatakeyama [10] for a Sasakian manifold.
Proposition 1.4. On an &-manifold

TxF)Y,2) =43 (9p,(Ng(X,2) — 9 (D)g(X, Y))
— 3 2 2, X0(Y)9,(Z) — 9Dy, (Y)) .

Proof. In thiscase F = dy,,x = 1, - - -, 5, hence Proposition 1.3 becomes

V)Y, Z) = § 3 (0(Y)e(Z, £X) — 9(2)e(fX, fY))
=} 2 (AN)e(X, Z) — 7,(Y) 3 1,(X)7,(Z))

— 32 (DX, Y) — 5A2) 32 9, (X, (Y)),

which except for arrangement of terms is the desired formula.

Theorem 1.5. A 2 -structure is a €-structure if and only if VF = 0.

Proof. FF = 0 implies [f, f] = 0 and hence by normality > dy.(X, Y)&,
= 0, but &, - .-, &, are linearly independent therefore dy, = 0, x =1, ---,s
giving us a ¥-structure. Conversely if dy, = 0,x = 1, - - -, 5, then by Proposi-
tion 1.3 it is clear that FF = 0.

Let & denote the distribution determined by —f* and .# the complement
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distribution; .# is determined by f* + I and spanned by &, ---,&,. Let p =
2f2 + I be the difference of the projection maps f* 4+ I and —f*.

Theorem 1.6. A €-manifold M**¢ is a locally decomposable Riemannian
manifold which is locally the product of a Kaehler manifold M** and an Abelian
Lie group M:.

Proof. Vyf = 0 implies Fyf* = 0 and hence Fyp = O which is the con-
dition for M***¢ to be locally decomposable [14, p. 221] and in turn locally the
product of Riemannian manifolds M?* and M3. Now restricting f, g to M3* and
again denoting them by f, g we have f* = —I and g(fX, fY) = g(X, Y). Further
since V f = 0 we have [f, f] =0, and from dF = 0 on M**** we have on M3",
dF = 0, F" = 0 where F also denotes the fundamental 2-form on M?#*. Thus
M3 is Kaehlerian.

To show that M} is an Abelian Lie group we show that M®***¢ is locally the
product of M?” and s 1-dimensional manifolds. The integrability condition for
such a structure is 2 = 0 [11] where in our case

h = % Z (§I®77z)[§r®771’5 §z®771~ - %fZ[fz,fZ] .
Since [f?, ] = 0, from V f* = 0 we have

WX, Y) = £ 2 900X, YDE, + [9:(X)¢, 7.(Y)E,]
- vz([vz(X)gx; Y])'Sz‘ - 771'([X3 vz(Y)gz])Ez)Ez .

Nowif X,Y ¢ &, then [X, Y] ¢ ¥ since the distribution .# determined by —f*
is integrable, and it is easy to see that /(X,Y) = 0. If X, Y e .# it suffices to
take X = &,,Y = ¢, since &, --+,&, can be taken as part of a basis, but
[£,,&.] = 0 and A(&,, &,) = O follow easily. Finally if X = £, and Y ¢ %, we
have ‘

but from the coboundary formula dz,(X,Y) = X5, (Y) — Y5.(X) — 5((X, Y])
we have 5,([§,, Y]) = 0; hence A(§,,Y) = 0.

Theorems 1.5, 1.6 should be compared with the corresponding results for
for cosymplectic manifolds (s = 1) [2].

We close this section with some results on the curvature of 5 -manifolds.

Theorem 1.7. In both the -structure and %-structure cases the distri-
bution A is flat, i.e., all sectional curvatures K(X,Y) for sections spanned by
X, Y e A vanish. In the &-structure case sectional curvatures K(X,Y) with
XeZ,Y =&, have value 1/4. In the ¥-structure case sectional curvatures
with X ¢ #,Y ¢ A vanish.

Proof. In the & -structure case using Lemma 1.2 and #,_f = O we have
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R, x§y = Viewnfy +VaVe & — V. V16,
(iX,Xe‘Sf s
= —1ffX =

0, Xe.#,

from which the results for this case follow. For the #-structure case, V,£,=0
for every Y gives R, &, = 0 immediately.

Corollary 1.8. A G-manifold M*™*5 s > 2, of constant curvature is locally
flat.

Corollary 1.9, There are no S~-manifolds M****, s > 2 of constant curva-
ture of strictly positive curvature,

These results should be compared with those in the cases of s = 0,5 = 1
(see e.g. [1], [2], [5]).

2. A plane section is called an f-section if it is determined by a vector
X e ¥(m), me M*™** such that {X, X} is an orthonormal pair spanning the
section. The sectional curvature K(X,fX), denoted H(X), is called an f-
sectional curvature.

Define a tensor P of type (0, 4) as follows (cf. [8]):

PX,Y;Z,W) = F(X,Z)g(Y,W) — F(X, W)e(Y, Z)
— F(Y,2)e(X, W) + F(Y, W)e(X, Z) .

The following properties of P follow directly from the definition.

Lemma 2.1. a) P(X,Y;Z, W)= —P(Z, W;X,Y). b) Let {X,Y}, X,
Y ¢ ¥, be an orthonormal pair, and set g(X,fY) = cos 8, 0 < 8 < n. Then
PX,Y; X,fY) = —sin*4.

Lemma 2.2, Onrn an &-manifold M*"*3,

a) gRxyZ,fW) 4 8RxyfZ, W) = (s/DPX,Y; Z, W) + Q(X, Y ;Z, W),
where

— 18(W, 1X)s X 9(YAZ) — X 9(Z)n,(Y))
— 18(Z, 1Y)(s 2 79X (W) — 2 5(W)p, (X))

z,y

+ 18(Z, £ X)(s 22 Y (W) — 3 9.(W)pY)) .
Alsoif X, Y, Z, We ¥, then Q(X,Y; Z,W) = 0 and
b) g(RfoYny W) = gRyyZ, W),
c) 8(Rx;xY,fY) = g(RxyX,Y) + 8RRy ;v X, fY) + (s/2P(X, Y; X, fY),
d) g(RfXYfX> Y) = g(RXfYX: Y).
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Proof. A direct computation shows that
(V[X,YJF + VoV xF — PV y FYZ, W) = —g(RyvZ, IW) — g(RxyfZ, W) .

On the other hand using Proposition 1.4 and Lemma 1.2 to compute this we
obtain a). Using a) twice and equations (x) we obtain b). Writing g(Ry ;5 Y,fY)
= —g(Rx¢fY, X) — g(Ry;vX,Y) c) follows from a) and Lemma 2.1. Finally
applying a) twice and the definition of P we get d).

Lemma 2.3. On a ¥-manifold a) g(RyvZ, W) + g(RyvfZ, W) = 0. Also
XY, Z,We, then b) gR;xvfZ, W) = gRyyZ, W), ©) g(Rx; 1Y, fY)
=g(RyyX,Y) "l'g(RXfYX: fY), d 8(R xyfX, Y) =g(Ry v X, fY).

Proof. The proof is similar to that of Lemma 2.2 but in the case of a) is

much easier due to Theorem 1.5
Lemma 2.4. LetB(X,Y)=g(RxyX,Y) and for X ¢ ¥, D(X) = B(X, {X).
On an ¥ -manifold for X, Y ¢ & we have

B(X,Y) = 312—[3D<X 1Y) 4 3D(X —fY) — DX + Y) — DX — ¥)
— 4D(X) — 4D(Y) — 6sP(X,Y; X, fX)] .

On a -manifold for X,Y ¢ & we have

B(X,Y) = %[3D(X +fY)+3DX —fY) - DX +Y) — DX -Y)
— 4D(X) — 4D(Y)] .

Proof. A direct expansion gives

%[3D(X 4 fY) + 3DX — fY) — DX + ¥) — D(X — Y)
—4D(X) — 4D(Y) — 6sP(X,Y; X, Y)]
= glf[sgmnx, Y) + 68(R,x, X, §Y) + 8g(RyxY, fY)
+ 128((Ry4fX, fY) — 28Ry v X, f¥) — 28(R 11fX, ¥)
+ 48(Ry 41X, Y) — 65P(X, Y3 X, V)] .
Applying Lemma 2.2 this becomes
—315[6g<Rnx, Y) + 68(Ryr X, Y) + 88(RxyX, ¥) + 8g(Ry v X, fY)

+ 4sP(X, Y ;X,fY) + 128(Rxy X, Y) 4+ 3sP(X, Y; X, fY)
— 2g(RXfYX> fY) — Zg(RXfYX: fY) — 4g(RXfYX: 1Y)
+ sP(X,fY; X,Y) — 6sP(X,Y; X, fY)]

= gRyyX,Y) .
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The proof in the case of a ¥-manifold is similar by using Lemma 2.3.

If now {X, Y} is an orthonormal pair in .#¥ and g(X, fY) =co0s6,0< 8 < 7,
then K(X, Y) = B(X, Y) and, by straightforward computation, D(X) =
HX), D(Y) = HY), DX + fY) = 4(1 + cos ¥H(X + fY),D(X — {Y) =
41 —cos )*HX — fY), DX +Y)=4HX + Y),D(X —-Y) =4H(X - Y).
Using Lemma 2.1, Lemma 2.4 now becomes

Proposition 2.5. On an &-manifold for an orthonormal pair {X,Y} in &
we have

K(X,Y) = %[3(1 1 cos OPH(X + fY) + 3(1 — cos OPH(X — {Y)

_H(X +Y) — HX — Y) — HX) — HY) + %sinz a] .

In the case of a €-manifold the formula is the same except that the last term is
not present. ,

Theorem 2.6. The f-sectional curvatures determine the curvature of an -
manifold or a €-manifold completely.

Proof. In addition to Theorem 1.7 some other curvature formulas are
needed. It follows easily from Theorem 1.7 that in both cases R, . X = O for
all X. In the #-manifold case, if X ¢ . is a unit vector then g(Ry, X, §,) =

- 8(R¢ x5,,X) = 1/4 andhence Ry, X = (1/4) 31 6.+ Y, Y e Z; but

g(RXexXa Y) = —g(RXYfZX: 51)
= g(RyyfX, f&,) — %P(X, Y; iX,&,)
- Q(X5 Y; fX7 S.‘L‘) = 0 ’

so that Ry, X = (1/4) ] &,. In the ¥-manifold case Ry, X is easily checked.

Now let {X,Y} be orthonormal pair, and write X = aZ + 3}, 5.(X)&,,
Y =bW + X 5,(Y)§, where a* + Y} 9. (XV=1,0"+ 3 5(Y) =1 and
Z, W are unit vectors in %. Then after using the above curvature formulas
the lengthy expansion of K(X,Y) = g(Ry.X, Y) yields

K(X,Y) = ?T(z 7:(X)7,00) + %(z 7:(V)7,(1))

+ 22 7:03,(N) (S 7.007.00)
+ (@b* — (3 A X)) (Y)DIKZ, W)
in the %-manifold case and

K(X,Y) = (@b — (X 9.(X)nY))KZ, W)



162 D. E. BLAIR

in the #¥-manifold case. K(Z, W) is known however by Proposition 2.5, and
the proof is complete.

The above development should be compared to that in the Kaehler case [1]
and the Sasakian case [8].

We now give a number of geometric results which are consequences of
Proposition 2.5.

Theorem 2.7. The sectional curvatures K(X,Y), X, Y ¢ &, on an &-mani-
fold of constant f-sectional curvature ¢ < s|4 satisfy

1 3s
< KXY <_._(c __)
c < K( )_4 + 7

with the lower limit attained for an f-section. If ¢ > s/4,

l(c%—%—)SK(X,Y)SC

4

with the upper limit attained for an f-section. If c = s/4, K(X,Y) = c.
Proof. Proposition 2.5 gives

KX, Y) = 1 (c(l + 3cos’d) + ﬁsin2 0)

4

4
—(|c4+ =] 4+ 3(c — =)cos*8].
4((+4 4

One need only find the maximum and minimum of this with respect to ¢ and
note that for an f-section ¢ = = to obtain the result.

Corollary 2.8. A Sasakian manifold (s = 1) with constant f-sectional curva-
ture equal to 1/4 has constant curvature.

Proof. By the theorem s=1,c=1/4 gives K(X,Y)=1/4 for X, Y ¢ #.
Now for any orthonormal pair {X, Y} the proof of Theorem 2.6 yields

KX,Y) = —411—7;1()()2 + —}Tm(Y)Z + (I — p(X)? — 9 (YIK(Z, W),

Z,We.?, and hence K(X,Y) = 1/4 since K(Z, W) = 1/4,

Theorem 2.9. The sectional curvatures K(X,Y),X.Y ¢ &, on a €-mani-
fold of constant f-sectional curvature c are (1] 4)-pinched that is c/4 < K(X,Y)
<cforc>0and c < K(X,Y) < c/4 for ¢ < 0. For ¢ =0, the manifold is
locally flat (cf. Corollary 1.8).

Proof. By Proposition 2.5, K(X,Y) = (c/4)(1 4+ 3 cos*§) from which
the result follows.

3. In this section we start with M '+ as the bundle space of a principal
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toroidal bundle over a Kaehler manifold N*”; in the case s = 1 these are
principal circle bundles (see e.g. [2], [7]).

Theorem 3.1. Let M***° be the bundle space of a principal toroidal bundle
over a Kaehler manifold N** and let y = (y,, - - -, ,) be a Lie algebra valued
connexion form on M***¢ such that dy, = z*Q2,x =1, ---,s, where z is the
projection map and §2 the fundamental 2-form on N*". Then M***¢ is an -
manifold.

Proof. Let J be the almost complex structure tensor and G the Hermitian
metric on N?*, Then define f and g on M***$ by.

X = #Fm, X s
gX,Y) = G, X, n,.Y) + 2 9:(XnY),
where # denotes the horizontal lift. Let &, - - -, & be vector fields dual to 7,
e s i-e', 7]I(X) = g(Xa Ez) Then 7]1(5;/) - azyasz = 07 77:001: = 0 are im-
mediate. Now
X = z#ln,dle, X = #lPr, X = —X + 3, 0, (XE,,
from which f* 4 f = 0 and we see that M**** has an f-structure with comple-
mented frames. Further
X, 1Y) = GUr, X, Ir,Y) + 3 9. G@r, X))y, (7Ir, Y)
= G(r, X, 7, Y) = 8X,Y) — 3 9.,(X)(Y) .
Now F(X,Y) = gX, fY) = Gz, X, Jrn,Y) = Arx, X, =,Y), le.,, F=a*0Q =
dyp, from which we see that the fundamental 2-form F is closed and that
nA - An,A(dy)* # 0. Finally
5, fI(X,Y) + 2 dp (X, Y)é, = fIX, Y] + [FX, fY] — flfX, Y]
= &l X, Y1 + [#rn, X, #Je, Y] — #lr, [7r, X, Y]
— #lm (X, #In, YT + 3 dp (X, Y)E,
= & m, X, 7, Y1 + #lr, X, Iz, Y] + 3 9 ([#Jr, X, #)r, Y]E,
— ﬁ][]ﬂ*X, 7T*Y] — ﬁ'.][ﬂ'*X, JT[*Y] + Z dY]z(X, Y)E‘(
= — > dp(#Ir, X, 7, Y)E, + 3, dp(X, V)&,
=2 (—QUr X, Jr,Y) + Q7 X, 7, Y, =0,
since [J,J] = 0 and 2 is of bidegree (1, 1).
Now let U be a neighborhood on N** and suppose that G is given by ds* =
3, (84)%, where the 4s,4 =1, ...,2n are 1-forms on U. Suppose that the

Riemannian connexion is given by l-forms 64 on U so that the structural
equations become
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ot = —04 N 6%,
des = —65 N\ 63 + 0%,

where 04 = 1S,5cp0° A 6P and S, 05 is the curvature tensor on N*».

On U write the fundamental 2-form 2 = 0,64 N 0%; then we have dy, =
(302,504 N\ 07). Set ¢ = 5, and p* = z*0*; then g is given by do*= 3 (¢*)%,
a=1,---,2n + 5. Using the techniques of Kobayashi [6] we can find the
Riemannian connexion on M®"+5,

Proposition 3.2. ¢ = 0,02 = —¢f = — 30 ,50" and
1
SDg = n*0% — E‘ 2 QABSDI

define the Riemannian connexion of g on M**5,
Proof. Let V be an overlapping neighborhood on which ds? = 3 (4)°.
Then 64 = ef0®, e4 ¢ %(n). A bar above other forms will denote their com-

ponents defined with respect to V. Now
05 = Y. ebfgen — 2, (deg)eg .
c,D [o)
Letf* = f« = 0, # x,f% = 1,f4 = e4; then computing we have

Zfr@as Z(dfx)fy_()—“(ﬂy 5

. 1 . 1 _
LIty — D = —= 2 edQp0p? = —— 2. e5Q50e80"
7.0 7 2 5o 2 B.C,D
1= _ _
= _EQAM&D = §0§4: s

1
3 foif? — 5 INfE = 1% 3 etffel — — 3, edopede”
e T a,D 2 z.6,p T
— 7% 3, (def)et
c
— 1 . B N
= n‘*ﬁé — 7 Z “QAB§0I — SD;

Hence the ¢ define a connexion on M****. To see that it is the Riemannian
connexion we compute its torsion.

de® 4+ @f N = x* (%QMW /\‘93) + %QABSDB/\@A =0,

1

de* + §9;4/\§97 = z*df* — —;- 2 2o Ne® + (Tf*l% — =2 Lupp” ) @?
z,B )

=a*(do* + 05 N6%) = 0.
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The curvature form @ of this connexion is given by the second structural
equation, dp§ = —or A ¢ + @3. Computing @4 we have

05 = doz + @i N\ 0%
1

= —a*04 N\ 65 + 7*04 — > 2 (@*dR45) N ©®

— %04 — % 3 (2*dD.5) A o + %QABQCDSDD A o
1
— %—QABQBDSDC A SDD + —2' ZCTC*(QAcﬁg + chﬁﬁ) /\SDI
1
+ — Z »QACQCBSDI /\SDy
4 z9,.c
= 7*04 — %(QABQCD + 240250)0° N 9P

1
+ — Z QACQCBSDI/\SDy,
4 zy.c

since dQ, 5 — .05 — Qcp05 = 0, i.e., N** is Kaehlerian.
Now write @5 = LR,,,0" A\ ¢’; then

1 1
TRAanSDT N’ = (ESABCD - %(‘QAB'QCD + ‘QAC‘QBD)) AN

1
+ — 2 24cR0sp” No¥ .
4 z2,%,0
Skew-symmetrizing gives
Rypep = Sapen — %(2-QAB‘QCD + LacP8p — 2409250) -
Suppose now that N** has constant holomorphic sectional curvature X, i.e.,

K
SABCD = T(GADGBC' - GAC'GBD + ‘QAD‘QBC - ‘QAC‘QBD - 2‘QAB'QCD) .

Let {X, fX} span an f-section on M***¢ with X a unit vector; then the sectional
curvature of this section is given by
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C R X(GXPX (XY = —R 5o XA(X)PXC(fX)P
- —%(GADGBC — G 16Gpp) XA X)PXC(X)"

(2= 2 @untae = Qucan — 2242en) XXX GX)?

Hence we have the following theorem.

Theorem 3.3. Let M'** be a principal toroidal bundle over a Kaehler
manifold N** as in Theorem 3.1. If N** has constant holomorphic sectional
curvature K, then the &-manifold M*** has constant f-sectional curvature
equal to K — 3s/4.

Inequalities for the sectional curvature of other horizontal sections may be
derived from Theorem 2.7.

4. It is well-known that the canonical example of a Sasakian manifold.
the odd-dimensional sphere $*#*!, is a circle bundle over complex projective
space PC" by the Hopf-fibration. Let z’: $***! — PC" denote the Hopf-fibration ;
then using the diagonal map 4 we define a principal toroidal bundle over PC*
by the following diagram

A

HZHAEA.\' 4 SZn+l X R >< Sle—I—l

4
PC* — PC" X -+ X PC"

that is, H " = {(pr. -+, p) €™ X - X S 2(p) = -+ = (p)).
_ Now let . be the contact form on $%*°! and define 5, on H*** by 7,
J*{gu vy, = J%p.. Then

dy, = c!_j*;y’ = Jtdy, = J**Q, = 2* 420, = 2*0 |

where £, is the fundamental 2-form on PC" and @ that on PC*. Further y =
Op. - - . 7,) is equivariant and fibre preserving, hence by Theorem 3.1 the space
H* *is an %-manifold.

Recall that PC” has constant holomorphic sectional curvature K = | (Fubini-
Study metric) and that $§* "' (as a Sasakian manifold with the constant curvature
metric) has constant curvature 1/4. From Theorem 3.3 we obtain the follow-
ing result.

Theorem 4.1. H** "~ has constant f-sectional curvature 1 — 3s/4.

Analogous to PC" being (1/4)-pinched (1/4 < K(X, Y) < 1) and $*" ' having
constant curvature {4, from Theorems 2.7 and 4.1 we have

Theorem 4.2. Let X.Y ¢ ¥ on H* *,s > 2. Then
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13 ckx.vy< L.
7} )
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